A Neural Network Diagnosis Model without Disorder Independence Assumption
نویسندگان
چکیده
Generally, the disorders in a neural network diagnosis model are assumed independent each other. In this paper, we propose a neural network model for diagnostic problem solving where the disorder independence assumption is no longer necessary. Firstly, we characterize the diagnostic tasks and the causal network which is used to represent the diagnostic problem, then we describe the neural network diagnosis model, nally, some experiment results will be given.
منابع مشابه
Cell Deformation Modeling Under External Force Using Artificial Neural Network
Embryogenesis, regeneration and cell differentiation in microbiological entities are influenced by mechanical forces. Therefore, development of mechanical properties of these materials is important. Neural network technique is a useful method which can be used to obtain cell deformation by the means of force-geometric deformation data or vice versa. Prior to insertion in the needle injection pr...
متن کاملDiagnosis of Breast Cancer using a Combination of Genetic Algorithm and Artificial Neural Network in Medical Infrared Thermal Imaging
Introduction This study is an effort to diagnose breast cancer by processing the quantitative and qualitative information obtained from medical infrared imaging. The medical infrared imaging is free from any harmful radiation and it is one of the best advantages of the proposed method. By analyzing this information, the best diagnostic parameters among the available parameters are selected and ...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملDiagnosis of hyperlipidemia in patients based on an artificial neural network with pso algorithm
One of the most common and most dangerous diseases of blood fats are such as heart disease, diabetes and stroke, heart and brain. It can control the timely diagnosis, treatment and then prevention of complications is become very effective even without using medicine. Heart disease and diabetes file if patients has useful information that can be used to estimate blood fat timely diagnosis. In th...
متن کاملThe effects of the violation of local independence assumption on the person measures under the Rasch model
Local independence of test items is an assumption in all Item Response Theory (IRT) models. That is, the items in a test should not be related to each other. Sharing a common passage, which is prevalent in reading comprehension tests, cloze tests and C-Tests, can be a potential source of local item dependence (LID). It is argued in the literature that LID results in biased parameter estimation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1998